Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Discovering functional gene expression patterns in the metabolic network of Escherichia coli with wavelets transforms.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100965194 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2105 (Electronic) Linking ISSN: 14712105 NLM ISO Abbreviation: BMC Bioinformatics Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: [London] : BioMed Central, 2000-
    • الموضوع:
    • نبذة مختصرة :
      Background: Microarray technology produces gene expression data on a genomic scale for an endless variety of organisms and conditions. However, this vast amount of information needs to be extracted in a reasonable way and funneled into manageable and functionally meaningful patterns. Genes may be reasonably combined using knowledge about their interaction behaviour. On a proteomic level, biochemical research has elucidated an increasingly complete image of the metabolic architecture, especially for less complex organisms like the well studied bacterium Escherichia coli.
      Results: We sought to discover central components of the metabolic network, regulated by the expression of associated genes under changing conditions. We mapped gene expression data from E. coli under aerobic and anaerobic conditions onto the enzymatic reaction nodes of its metabolic network. An adjacency matrix of the metabolites was created from this graph. A consecutive ones clustering method was used to obtain network clusters in the matrix. The wavelet method was applied on the adjacency matrices of these clusters to collect features for the classifier. With a feature extraction method the most discriminating features were selected. We yielded network sub-graphs from these top ranking features representing formate fermentation, in good agreement with the anaerobic response of hetero-fermentative bacteria. Furthermore, we found a switch in the starting point for NAD biosynthesis, and an adaptation of the l-aspartate metabolism, in accordance with its higher abundance under anaerobic conditions.
      Conclusion: We developed and tested a novel method, based on a combination of rationally chosen machine learning methods, to analyse gene expression data on the basis of interaction data, using a metabolic network of enzymes. As a case study, we applied our method to E. coli under oxygen deprived conditions and extracted physiologically relevant patterns that represent an adaptation of the cells to changing environmental conditions. In general, our concept may be transferred to network analyses on biological interaction data, when data for two comparable states of the associated nodes are made available.
    • References:
      J Comput Biol. 1995 Summer;2(2):159-84. (PMID: 7497125)
      Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12170-5. (PMID: 11027315)
      Nature. 2000 Feb 10;403(6770):623-7. (PMID: 10688190)
      FEBS Lett. 2005 Jul 4;579(17):3737-43. (PMID: 15967443)
      Jpn J Genet. 1988 Aug;63(4):343-57. (PMID: 3078876)
      Biochem J. 2004 Mar 15;378(Pt 3):1047-52. (PMID: 14641112)
      Stat Appl Genet Mol Biol. 2004;3:Article37. (PMID: 16646817)
      Nat Biotechnol. 2004 Oct;22(10):1261-7. (PMID: 15470466)
      Bioinformatics. 2002 Aug;18(8):1054-63. (PMID: 12176828)
      Proc Int Conf Intell Syst Mol Biol. 2000;8:407-17. (PMID: 10977101)
      Nucleic Acids Res. 2002 Jan 1;30(1):59-61. (PMID: 11752254)
      Science. 1997 Sep 5;277(5331):1453-62. (PMID: 9278503)
      Bioinformatics. 2002;18 Suppl 1:S96-104. (PMID: 12169536)
      Arch Biochem Biophys. 1995 Jan 10;316(1):547-54. (PMID: 7840665)
      Nature. 2002 Jan 31;415(6871):530-6. (PMID: 11823860)
      Science. 2003 Jul 4;301(5629):102-5. (PMID: 12843395)
      Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5. (PMID: 10829079)
      J Bacteriol. 1978 Oct;136(1):168-74. (PMID: 361686)
      Nature. 2000 Oct 5;407(6804):651-4. (PMID: 11034217)
      Mol Biol Cell. 2000 Dec;11(12):4241-57. (PMID: 11102521)
      Nucleic Acids Res. 2003 Jan 1;31(1):147-51. (PMID: 12519969)
      Mol Biol Cell. 1998 Dec;9(12):3273-97. (PMID: 9843569)
      Biochemistry. 2005 Jan 18;44(2):766-74. (PMID: 15641804)
      J Comput Biol. 1995 Summer;2(2):219-73. (PMID: 7497128)
      Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21. (PMID: 11309499)
      Bioinformatics. 2004 Jul 10;20(10):1500-5. (PMID: 15231542)
      Bioinformatics. 2002;18 Suppl 1:S233-40. (PMID: 12169552)
      Nucleic Acids Res. 2005 Jan 1;33(Database issue):D334-7. (PMID: 15608210)
      Nature. 2004 May 6;429(6987):92-6. (PMID: 15129285)
      Bioinformatics. 2002;18 Suppl 1:S145-54. (PMID: 12169542)
    • الرقم المعرف:
      0 (Escherichia coli Proteins)
      S88TT14065 (Oxygen)
    • الموضوع:
      Date Created: 20060310 Date Completed: 20060502 Latest Revision: 20230415
    • الموضوع:
      20240628
    • الرقم المعرف:
      PMC1434775
    • الرقم المعرف:
      10.1186/1471-2105-7-119
    • الرقم المعرف:
      16524469