Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Mesoporous Zr-G-C 3 N 4 Sorbent as an Exceptional Cu (II) Ion Adsorbent in Aquatic Solution: Equilibrium, Kinetics, and Mechanisms Study.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- معلومة اضافية
- نبذة مختصرة :
A mesoporous Zr-G-C3N4 nanomaterial was synthesized by a succinct-step ultrasonication technique and used for Cu2+ ion uptake in the aqueous phase. The adsorption of Cu2+ was examined by varying the operating parameters, including the initial metal concentration, contact time, and pH value. Zr-G-C3N4 nanosorbent displays graphitic carbon nitride (g-C3N4) and ZrO2 peaks with a crystalline size of ~14 nm, as determined by XRD analysis. The Zr-G-C3N4 sorbent demonstrated a BET-specific surface area of 95.685 m2/g and a pore volume of 2.16 × 10−7 m3·g−1. Batch mode tests revealed that removing Cu (II) ions by the mesoporous Zr-G-C3N4 was pH-dependent, with maximal removal achieved at pH = 5. The adsorptive Cu2+ ion process by the mesoporous nanomaterial surface is well described by the Langmuir isotherm and pseudo-second-order kinetics model. The maximum adsorption capacity of the nanocomposite was determined to be 2.262 mol·kg−1 for a contact time of 48 min. The results confirmed that the fabricated mesoporous Zr-G-C3N4 nanomaterial is effective and regenerable for removing Cu2+ and could be a potent adsorbent of heavy metals from aqueous systems. [ABSTRACT FROM AUTHOR]
No Comments.