Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Elevated Temperature Affects Avena sterilis ssp. ludoviciana Reproductive Biology.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
    • نبذة مختصرة :
      The weed Avena sterilis ssp. ludoviciana has a high economic impact in the winter cereal crop production systems of Australia's northern grains region (NGR). In the NGR, the frequency of high-temperature periods at the end of winter is increasing. This shift in climate may modify this weed's maturity time and reproductive biology, and thereby impact on crop production. This study examined the reproductive biology of four A. ludoviciana biotypes in relation to elevated temperature when applied at different times during their seed development. Plants of all four A. ludoviciana biotypes were grown in an ambient temperature glasshouse (23/14 °C day/night). At panicle initiation, a portion of the plants were transferred to an elevated temperature glasshouse (29/23 °C day/night) and remained there until maturity. This process of plant movement was repeated on three further occasions with separate batches of plants, each 10 days apart. The remaining plants were kept under ambient conditions for their whole lifespan. Plants exposed to elevated temperature from panicle initiation to maturity, matured 18 days earlier than plants kept under ambient conditions, had 30% fewer filled seeds, 37% lower seed mass, and 40% less seed dormancy. Depending on the time and duration of plants exposed to elevated temperature, predicted seed longevity was ranged from 1 to 4 years in the soil seedbank. All reproductive traits were less affected when plants were exposed to elevated temperature at a later stage of development. If the frequency of high-temperature periods continues to increase, then it may lead to the development of less dormant populations of this weed that would be ready to germinate and re-infest the next winter crops under no-tillage conservation agriculture (that does not bury seeds deep in the soil profile). However, the seasonal climatic variability of the NGR in addition to the weed's natural genetic variability may contribute to a seedbank of both dormant and less dormant seeds—making this species an even more difficult-to-control weed. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Agronomy is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)