Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Two-Dimensional Quantum Dots: From Photoluminescence to Biomedical Applications.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Quantum dots (QDs) play a fundamental role in nanotechnology because of their unique optical properties, especially photoluminescence (PL). Quantum confinement effects combined with tailor-made materials make QDs extremely versatile for understanding basic physical phenomena intrinsic to them as well as defining their use in a vast range of applications. With the advent of graphene in 2004, and the discovery of numerous other two-dimensional (2D) materials subsequently, it became possible to develop novel 2D quantum dots (2DQDs). Intensive research of the properties of 2DQDs over the last decade have revealed their outstanding properties and grabbed the attention of researchers from different fields: from photonics and electronics to catalysis and medicine. In this review, we explore several aspects of 2DQDs from their synthesis, functionalization, and characterization to applications, focusing on their bioimaging, biosensing, and theranostic solutions [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Solids (2673-6497) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)