Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Prediction Model of Wastewater Pollutant Indicators Based on Combined Normalized Codec.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Effective prediction of wastewater treatment is beneficial for precise control of wastewater treatment processes. The nonlinearity of pollutant indicators such as chemical oxygen demand (COD) and total phosphorus (TP) makes the model difficult to fit and has low prediction accuracy. The classical deep learning methods have been shown to perform nonlinear modeling. However, there are enormous numerical differences between multi-dimensional data in the prediction problem of wastewater treatment, such as COD above 3000 mg/L and TP around 30 mg/L. It will make current normalization methods challenging to handle effectively, leading to the training failing to converge and the gradient disappearing or exploding. This paper proposes a multi-factor prediction model based on deep learning. The model consists of a combined normalization layer and a codec. The combined normalization layer combines the advantages of three normalization calculation methods: z-score, Interval, and Max, which can realize the adaptive processing of multi-factor data, fully retain the characteristics of the data, and finally cooperate with the codec to learn the data characteristics and output the prediction results. Experiments show that the proposed model can overcome data differences and complex nonlinearity in predicting industrial wastewater pollutant indicators and achieve better prediction accuracy than classical models. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Mathematics (2227-7390) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)