Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Cortical Motor Planning and Biomechanical Stability During Unplanned Jump Landings in Men With Anterior Cruciate Ligament Reconstruction.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
    • نبذة مختصرة :
      Athletes with anterior cruciate ligament (ACL) reconstruction (ACLR) exhibit increased cortical motor planning during simple sensorimotor tasks compared with healthy athletes serving as control groups. This may interfere with proper decision making during time-constrained movements, elevating the reinjury risk. To compare cortical motor planning and biomechanical stability during jump landings between participants with ACLR and healthy individuals. Cross-sectional study. Laboratory. Ten men with ACLR (age = 28 ± 4 years, time after surgery = 63 ± 35 months) and 17 healthy men (age = 28 ± 4 years) completed 43 ± 4 preplanned (landing leg shown before takeoff) and 51 ± 5 unplanned (visual cue during flight) countermovement jumps with single-legged landings. Movement-related cortical potentials (MRCPs) and frontal θ frequency power before the jump were analyzed using electroencephalography. Movement-related cortical potentials were subdivided into 3 successive 0.5-second time periods (readiness potential [RP]-1, RP-2, and negative slope [NS]) relative to movement onset, with higher values indicating more motor planning. Theta power was calculated for the last 0.5 second before movement onset, with higher values demonstrating more focused attention. Biomechanical landing stability was measured via peak vertical ground reaction force, time to stabilization, and center of pressure. Both the ACLR and healthy groups evoked MRCPs at all 3 time periods. During the unplanned task analyzed using P values and Cohen d, the ACLR group exhibited slightly higher but not different MRCPs, achieving medium effect sizes (RP-1: P =.25, d = 0.44; RP-2: P =.20, d = 0.53; NS: P =.28, d = 0.47). The ACLR group also showed slightly higher θ power values that were not different during the preplanned (P =.18, d = 0.29) or unplanned (P =.42, d = 0.07) condition, achieving small effect sizes. The groups did not differ in their biomechanical outcomes (P values >.05). No condition × group interactions occurred (P values >.05). Our jump-landing task evoked MRCPs. Although not different between groups, the observed effect sizes provided the first indication that men with ACLR might have consistently relied on more cortical motor planning associated with unplanned jump landings. Confirmatory studies with larger sample sizes are warranted. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Journal of Athletic Training (Allen Press) is the property of Allen Press Publishing Services Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)