Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Using data mining techniques to isolate chemical intrusion in water distribution systems.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      The security of water distribution systems has become the subject of an increasing volume of research over the last decade. Data analysis and machine learning are linked to hydraulic and quality modeling for improving the capacity of water utilities to save lives when faced with the contamination of water networks. This research applies k-nearest neighbor and random forest algorithms to estimate the location of contamination sources at near-real time. Epanet and Epanet-MSX software are used to simulate intrusions of pesticide into water distribution system and the interaction with compounds already present in water bulk. Different pesticide concentrations are considered in the simulations, and chlorine monitoring occurs through placed quality sensors. The results show that random forest can localize 88 % of contamination scenarios, while the KNN algorithm found 87 % . Finally, an assessment of contamination spread is made for a better understanding of the impacts of non-localized contamination. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Environmental Monitoring & Assessment is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)