Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Protein thiol modifications visualized in vivo.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Leichert LI;Leichert LI; Jakob U
  • المصدر:
    PLoS biology [PLoS Biol] 2004 Nov; Vol. 2 (11), pp. e333. Date of Electronic Publication: 2004 Oct 05.
  • نوع النشر :
    Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, P.H.S.
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101183755 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1545-7885 (Electronic) Linking ISSN: 15449173 NLM ISO Abbreviation: PLoS Biol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: San Francisco, CA : Public Library of Science, [2003]-
    • الموضوع:
    • نبذة مختصرة :
      Thiol-disulfide interconversions play a crucial role in the chemistry of biological systems. They participate in the major systems that control the cellular redox potential and prevent oxidative damage. In addition, thiol-disulfide exchange reactions serve as molecular switches in a growing number of redox-regulated proteins. We developed a differential thiol-trapping technique combined with two-dimensional gel analysis, which in combination with genetic studies, allowed us to obtain a snapshot of the in vivo thiol status of cellular proteins. We determined the redox potential of protein thiols in vivo, identified and dissected the in vivo substrate proteins of the major cellular thiol-disulfide oxidoreductases, and discovered proteins that undergo thiol modifications during oxidative stress. Under normal growth conditions most cytosolic proteins had reduced cysteines, confirming existing dogmas. Among the few partly oxidized cytosolic proteins that we detected were proteins that are known to form disulfide bond intermediates transiently during their catalytic cycle (e.g., dihydrolipoyl transacetylase and lipoamide dehydrogenase). Most proteins with highly oxidized thiols were periplasmic proteins and were found to be in vivo substrates of the disulfide-bond-forming protein DsbA. We discovered a substantial number of redox-sensitive cytoplasmic proteins, whose thiol groups were significantly oxidized in strains lacking thioredoxin A. These included detoxifying enzymes as well as many metabolic enzymes with active-site cysteines that were not known to be substrates for thioredoxin. H(2)O(2)-induced oxidative stress resulted in the specific oxidation of thiols of proteins involved in detoxification of H(2)O(2) and of enzymes of cofactor and amino acid biosynthesis pathways such as thiolperoxidase, GTP-cyclohydrolase I, and the cobalamin-independent methionine synthase MetE. Remarkably, a number of these proteins were previously or are now shown to be redox regulated.
      Competing Interests: The authors have declared that no conflicts of interest exist.
    • References:
      Biochemistry. 1999 Nov 30;38(48):15915-26. (PMID: 10625458)
      Plant Cell Physiol. 2004 Jan;45(1):18-27. (PMID: 14749482)
      J Mol Biol. 2000 Aug 11;301(2):389-99. (PMID: 10926516)
      Annu Rev Microbiol. 2000;54:439-61. (PMID: 11018134)
      J Bacteriol. 2001 Mar;183(6):1961-73. (PMID: 11222594)
      Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4794-9. (PMID: 11274350)
      Protein Sci. 2001 May;10(5):911-22. (PMID: 11316870)
      Mol Cell Biol. 2001 Sep;21(18):6139-50. (PMID: 11509657)
      Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11224-9. (PMID: 11553771)
      J Bacteriol. 2001 Dec;183(24):7182-9. (PMID: 11717277)
      Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3759-64. (PMID: 15004283)
      J Biol Chem. 2004 Mar 26;279(13):12967-73. (PMID: 14726535)
      J Biol Chem. 2004 May 21;279(21):21749-58. (PMID: 15031298)
      J Bacteriol. 1974 Sep;119(3):736-47. (PMID: 4604283)
      Biochem J. 1984 Oct 15;223(2):507-17. (PMID: 6388571)
      J Bacteriol. 1985 Jul;163(1):1-7. (PMID: 3891721)
      J Biol Chem. 1990 Feb 5;265(4):1985-95. (PMID: 2404975)
      J Biol Chem. 1991 May 25;266(15):9494-500. (PMID: 2033048)
      Cell. 1991 Nov 1;67(3):581-9. (PMID: 1934062)
      J Biol Chem. 1991 Nov 5;266(31):20709-13. (PMID: 1939121)
      Biochemistry. 1991 Dec 24;30(51):11788-95. (PMID: 1751496)
      Biochim Biophys Acta. 1992 May 22;1121(1-2):234-8. (PMID: 1350921)
      Science. 1993 Dec 10;262(5140):1744-7. (PMID: 8259521)
      Protein Sci. 1993 Nov;2(11):1890-900. (PMID: 8268800)
      Mol Microbiol. 1994 Oct;14(2):199-205. (PMID: 7830566)
      FEBS Lett. 1995 May 1;364(1):55-8. (PMID: 7750543)
      Mol Cell Biol. 1995 Jul;15(7):3892-903. (PMID: 7791795)
      Protein Sci. 1995 Nov;4(11):2327-34. (PMID: 8563629)
      J Mol Biol. 1996 Apr 12;257(4):814-38. (PMID: 8636984)
      Structure. 1995 Dec 15;3(12):1395-406. (PMID: 8747465)
      J Biol Chem. 1997 Jun 20;272(25):15661-7. (PMID: 9188456)
      Biochemistry. 1997 Oct 28;36(43):13349-56. (PMID: 9341227)
      Science. 1998 Mar 13;279(5357):1718-21. (PMID: 9497290)
      J Mol Biol. 1999 Jan 29;285(4):1633-53. (PMID: 9917402)
      Cell. 1999 Feb 5;96(3):341-52. (PMID: 10025400)
      Proc Natl Acad Sci U S A. 1999 May 25;96(11):6161-5. (PMID: 10339558)
      Biochemistry. 1999 May 18;38(20):6699-705. (PMID: 10350489)
      EMBO J. 1999 Aug 2;18(15):4292-8. (PMID: 10428967)
      Structure. 1999 Sep 15;7(9):1155-66. (PMID: 10508786)
      Biochim Biophys Acta. 1960 May 6;40:184-5. (PMID: 14422130)
      PLoS Biol. 2004 Nov;2(11):e336. (PMID: 15502870)
      Methods Enzymol. 2002;348:175-82. (PMID: 11885270)
      Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3505-10. (PMID: 11904414)
      Cell. 2002 May 3;109(3):383-96. (PMID: 12015987)
      J Biol Chem. 2002 May 24;277(21):18561-7. (PMID: 11893749)
      J Biol Chem. 2002 Jun 28;277(26):23949-57. (PMID: 11971897)
      J Bacteriol. 2003 Jan;185(1):221-30. (PMID: 12486059)
      Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):370-5. (PMID: 12509500)
      Nucleic Acids Res. 2003 Jan 1;31(1):365-70. (PMID: 12520024)
      J Mol Biol. 2003 Feb 14;326(2):503-16. (PMID: 12559918)
      FEBS Lett. 2003 May 22;543(1-3):144-7. (PMID: 12753922)
      Nucleic Acids Res. 2003 Jul 1;31(13):3613-7. (PMID: 12824378)
      Antioxid Redox Signal. 2003 Aug;5(4):425-34. (PMID: 13678530)
      EMBO J. 2003 Oct 15;22(20):5501-10. (PMID: 14532122)
      J Biol Chem. 2003 Dec 5;278(49):49478-86. (PMID: 14506251)
      Proteins. 2004 Jan 1;54(1):20-40. (PMID: 14705021)
      Proteins. 2004 Jan 1;54(1):157-61. (PMID: 14705032)
      Science. 2004 Jan 23;303(5657):534-7. (PMID: 14739460)
      Free Radic Biol Med. 2000 May 1;28(9):1349-61. (PMID: 10924854)
    • Grant Information:
      R01 GM065318 United States GM NIGMS NIH HHS; GM065318 United States GM NIGMS NIH HHS
    • Molecular Sequence:
      SWISSPROT P00353; P00391; P00477; P00886; P00891; P02351; P02389; P02932; P02934; P02990; P03003; P04805; P05838; P06128; P06139; P06959; P06977; P07004; P07014; P07395; P07459; P07655; P07656; P08178; P08200; P08328; P08839; P10904; P11721; P14178; P17547; P21155; P22257; P23843; P23847; P24991; P25665; P26427; P27511; P28635; P30859; P30860; P31554; P36683; P36857; P37901; P39182; P45803
    • الرقم المعرف:
      0 (Disulfides)
      0 (Escherichia coli Proteins)
      0 (Sulfhydryl Compounds)
      52500-60-4 (Thioredoxins)
      EC 1.8.4.2 (Protein Disulfide Reductase (Glutathione))
      EC 2.1.1.- (Methyltransferases)
      EC 2.1.1.14 (metE protein, E coli)
      EC 3.5.4.16 (GTP Cyclohydrolase)
      EC 5.3.4.1 (Protein Disulfide-Isomerases)
      K848JZ4886 (Cysteine)
      S88TT14065 (Oxygen)
    • الموضوع:
      Date Created: 20041027 Date Completed: 20060203 Latest Revision: 20181113
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC521172
    • الرقم المعرف:
      10.1371/journal.pbio.0020333
    • الرقم المعرف:
      15502869