Item request has been placed!
×
Item request cannot be made.
×
Processing Request
16S rDNA and ITS Sequence Diversity of Burkholderia mallei Isolated from Glanders-Affected Horses and Mules in India (2013–2019)
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- معلومة اضافية
- نبذة مختصرة :
Glanders is a highly contagious and fatal infection of equids caused by the bacteria known as Burkholderia mallei. It is one of the notifiable equine diseases and is still present in Asia, South America and Africa. In India, glanders re-emerged in 2006, and thereafter, increasing numbers of cases were reported in different regions of the country. Between 2013 and 2019, 39 B. mallei were isolated from glanders-affected horses (n = 30) and mules (n = 9) from seven states of India such as Uttar Pradesh, Haryana, Delhi, Himachal Pradesh, Gujarat, Maharashtra and Tamil Nadu. In this study, the phylogenetic relationships of these isolates were assessed by sequence analysis of 16S rDNA gene and ITS region. Purified PCR-amplified products of 16S rDNA gene and ITS region were sequenced, aligned and phylogenetic trees were constructed using MEGA 11 software. Additionally, B. mallei 16S rDNA (n = 36) and ITS (n = 18) sequences available in the GenBank were also included for analysis to determine the diversity of older B. mallei isolates with recent Indian isolates. Both the phylogeny showed that the majority of the recent isolates from India are closely related to each other, but are genetically diverse from older isolates that originated from India. Nucleotide substitutions were also observed in a single and double position in 12 recent and two old Indian isolates. The study also indicates that similar B. mallei strains were responsible for glanders outbreaks in different states (Uttar Pradesh- Himachal Pradesh and Uttar Pradesh- Haryana) and this is due to the migration of infected animals from one state to another state. This study implies that 16S rDNA and ITS region may be used for molecular characterization of B. mallei associated with glanders in resource-limited settings. [ABSTRACT FROM AUTHOR]
No Comments.