Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Machine learning approach to transform scattering parameters to complex permittivities.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      This study investigates the application of artificial neural networks to determine the complex dielectric material properties derived from experimental VNA scattering parameter measurements. The study utilizes a finite element approach to synthetically generate data to train the neural network. The neural network was trained using a supervised learning approach and validated using experimental measurement data. The frequency range of interest was between 0.1 and 13.5 GHz with the real part of the dielectric constants ranging from 1 − 100 and the imaginary part ranging from 0 − 0.2. This modelling approach decreases the uncertainty when compared to existing inverse approaches. This approach demonstrates a general framework that can be used for converting experimental or computational derived scattering parameters to complex permittivities. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Journal of Microwave Power & Electromagnetic Energy is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)