Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Effects of Zinc on Cell Proliferation, Zinc Transport, and Calcium Deposition in Primary Endometrial Epithelial Cells of Laying Hens In Vitro.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      For birds, the uterus is an important part for eggshell mineralization, and the establishment of the endometrial epithelial cell (EEC) model was beneficial to the study of uterine function. This study was conducted to establish a culture model of primary EECs of laying hens and explore the effects of zinc on primary EEC proliferation, zinc transport, and calcium deposition in vitro. The EECs were isolated and cultured via type I collagenase digestion, and in the logarithmic phase during 2–5 days, and then reached the plateau phase on the 7th day of inoculation. Results showed that the proliferation of EECs treated by 50 μM ZnSO4 or zinc-methionine (Zn-Met) were markedly promoted at 24-h or 48-h treating time (P < 0.05). In later experiments, the EECs were divided into three groups, involving a control group (no zinc treated), ZnSO4 group (50 μM zinc treated) and a Zn-Met group (50 μM zinc treated). Results showed the relative fluorescence intensity of Ca2+ in the Zn-Met group was significantly higher than that in the control group (P < 0.05). As for zinc transporters, it was only observed that mRNA levels of metallothionein (MT) in EECs showed a significant difference (P < 0.05) between the Zn-Met group and the control. In conclusion, the EECs of laying hens isolated by scraping and digested collagenase I were with better adherent growth. Moreover, Zn-Met can increase intracellular Ca2+ concentration and upregulate expressions of MT mRNA in the EECs of laying hens. [ABSTRACT FROM AUTHOR]