Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Modeling of soil shear strength using multiple linear regression (MLR) at Penang, Malaysia.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
    • نبذة مختصرة :
      This paper presents multiple linear regression (MLR) soil shear strength models developed from electrical resistivity and seismic refraction tomography data. The MLR technique is used to estimate the value of dependent variables of soil shear strength based on the value of two independent variables, namely, resistivity and velocity. These parameters were regressed using regression statistics technique for generating MLR model. The results of MLR model, which is based on the estimation of model dependent parameters (Log10 resistivity and Log10 velocity), calculated for p-value, are less than 0.05 and VIF value less than 10 for cohesion and friction angle models. This result shows that there is a statistically significant relationship between cohesion and friction angle with geophysical parameters (independent variables). The estimation accuracy of the MLR models is also conducted for verification, and the result shows that RMSE value for predicted cohesion and predicted friction angle is 0.77 kN/m2 and 1.73° which is close to zero. Meanwhile, MAPE value was found to be 4.57 % and 7.61 %, indicating highly accurate estimation for the MLR models of predicted cohesion and predicted friction angle. Based on the application of near surface, the study area was successfully classified into two regions, namely, medium and hard clayey sand. Thus, it is concluded that MLR method is suitable in estimating the subsurface characterization that covered more regions compared to the traditional method (laboratory test). [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Journal of Engineering Research (2307-1877) is the property of Kuwait University, Academic Publication Council and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)