Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The Wild Bootstrap with a "Small" Number of "Large" Clusters.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
    • نبذة مختصرة :
      This paper studies the wild bootstrap–based test proposed in Cameron, Gelbach, and Miller (2008). Existing analyses of its properties require that number of clusters is "large." In an asymptotic framework in which the number of clusters is "small," we provide conditions under which an unstudentized version of the test is valid. These conditions include homogeneity-like restrictions on the distribution of covariates. We further establish that a studentized version of the test may only overreject the null hypothesis by a "small" amount that decreases exponentially with the number of clusters. We obtain a qualitatively similar result for "score" bootstrap-based tests, which permit testing in nonlinear models. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Review of Economics & Statistics is the property of MIT Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)