Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

HLA-A gene knockout using CRISPR/Cas9 system toward overcoming transplantation concerns.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Background: The treatment of many cancers and genetic diseases relies on novel engraftment approaches such as cell therapy and hematopoietic stem cell transplantation (HSCT). However, these methods are hindered by the alloreactive immune responses triggered by incompatible human leukocyte antigen (HLA) molecules. A successful HSCT procedure requires the eradication of donor and recipient HLA alloimmunization. Eliminating HLA-A gene expression using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9) could be a great approach to increase the possibility of a successful HSCT through extending pool of unrelated donors. Results: Our dual gRNA approach introduced a large deletion in the HLA-A gene. Among 22 single-cloned cells, two clones (9.09%) and 11 clones (50%) received homozygous and heterozygous large deletions, respectively. Finally, the real-time PCR results also revealed that HLA-A gene expression was diminished significantly. Conclusion: The results suggested that CRISPR/Cas9 could be used as an efficient technique to introduce HLA-A gene knockout; thus, it can considerably lessen the burden of finding a fully matched donor by lowering the alleles required for a successful HSCT. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Egyptian Journal of Medical Human Genetics is the property of Egyptian Society of Human Genetics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)