Item request has been placed!
×
Item request cannot be made.
×
Processing Request
High‐throughput sequencing‐based analysis of fungal diversity and taste quality evaluation of Douchi, a traditional fermented food.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- معلومة اضافية
- الموضوع:
- نبذة مختصرة :
Douchi, a popular traditional fermented soybean product, is mainly made by natural fermentation. However, its taste quality is affected by specific fungal communities which vary greatly according to fermentation conditions and production technologies used in different regions. Therefore, the taste quality of Douchi samples from different regions was digitally evaluated using electronic tongue technology. In addition, the fungal community structures and its association of them were also identified using high‐throughput sequencing technology. Results showed that there were obvious differences in the taste quality of samples from different regions, while the tastes of different types of samples from the same region were similar. Sourness, umami, richness, and saltiness were the main reasons for regional differences in taste. Similarly, the results of high‐throughput sequencing indicated that samples from different regions displayed important differences in dominant fungal genus, among which Debaryomyces, Fusarium, Pichia, Aspergillus, and Saccharomyces were the main dominant fungi. Debaryomyces and Trichosporon were conducive to the formation of taste qualities of Douchi, while Cladosporium and Candida have a negative impact on the taste quality of Douchi var correlation analysis. This study indicated the effects of dominant fungi on the formation of Douchi taste quality, allowing a deeper understanding of the role of microbial species in generating fermented soybean products in China. Our work provides theoretical support to guide the improvement of the industrial production process of Douchi. [ABSTRACT FROM AUTHOR]
- نبذة مختصرة :
Copyright of Food Science & Nutrition is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.