Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

基于多流高斯概率融合网络的病虫害细粒度识别. (Chinese)

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Alternate Title:
      Fine-grained recognition of diseases and pests based on multi-stream Gaussian probability fusion network. (English)
    • نبذة مختصرة :
      Accurate identification of diseases and insect pests has been the key link to the yield, quality and safety of crops in modern agriculture. However, the same category of diseases and insect pests showed obvious differences in intra-class representation and slight similarities in inter-class representation of various diseases, due to the influence of environmental conditions, disease cycle and damaged tissues. At present, the traditional deep transfer learning methods have been difficult to cope with large-scale, multi-class fine-grained identification of pests and diseases, particularly unsuitable to the practice in complicated scenes. This paper aims to apply multiple source cameras in agricultural Internet of Things (IoT) and different intelligent precision equipment, including picking robots and smart phones, to capture high resolution 122,000 images of insect pests and diseases, covering a total of 181 fine-grained categories, including 49 types pests and 77 types diseases on different plant parts of different crops. A fine-grained recognition model was then proposed for pests and diseases based on the Multi-Stream Gaussian Probability Fusion Network (MPFN). In detail, a data-augmented method was first employed to enlarge the dataset, and then to pretrain the basic VGG19 and ResNet networks on high-quality images, in order to learn common and domain knowledge, as well fine-tuning with professional skill. Next, the refined multiple deep learning networks, including Fast-MPN and NTS-Net with transfer learning, were applied to design a multi-stream feature extractor, utilizing the mixture-granularity information to exploit high-dimensionality features, thereby to distinguish interclass discrepancy and tolerate intra-class variances. Finally, an integrated optimization was developed combining the NetVLAD feature aggregation layer with the gaussian probability fusion layer, in order to fuse various components model with Gaussian distribution as a unified probability representation for the ultimate fine-grained recognition. The input of this module was the various features of multi-models, whereas, the output was the fused classification probability. The end-to-end implementation of framework included an inner loop about the expectation maximization algorithm within an outer loop with the gradient back-propagation optimization of the whole network, indicating multi-model fusion information complementation and confidence for the overall model. The experimental results demonstrated that the MPFN model presented the excellent performance in the average recognition accuracy rate of 93.18% for a total of 181 classes of pests and diseases, indicating 5.6 percentage points better than that of the coarse-grained and fine-grained deep learning methods. In terms of test time, the average processing time of the MPFN was 61ms, indicating the basic needs of fine-grained image recognition of pests and diseases at the terminals of the IoT and intelligent equipment. In the contradistinctive analysis, training loss curves and various sub-categories identification showed that the feature aggregation fusion and Gaussian probability fusion can greatly enhance the efficiency of model with the training speed, recognition accuracy and generalized robustness for fine-grained identification of crop pests and diseases in practical scenarios. Therefore, this work can provide a technical application reference for the intelligent recognition of pests and diseases in agricultural production. In the follow-up study, more images will be taken under natural conditions to develop a more robust MPFN model deployed on actual IoTs or equipment for the pre-warning, prevention, and control of crop pests and diseases in modern agriculture. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      为解决由于现有深度迁移学习无法有效匹配实际农业场景部署应用,而导致大规模、多类别、细粒度的病虫害 辨识准确低、泛化鲁棒差等问题,该研究利用农业物联网中多种设备终端获取 12.2 万张 181 类病虫害图像,并提出了基 于多流概率融合网络 MPFN(Multi-stream Gaussian Probability Fusion Network)的病虫害细粒度识别模型。该模型设计多 流深度网络并行的细粒度特征提取层,挖掘可区分细微差异的不同级别局部特征表达,经过局部描述特征聚合层和高斯 概率融合层的整合优化,发挥多模型融合信息互补及置信耦合的优势,既可以有效区分不同类病虫害的种间微小差异, 又可容忍同类病虫害种内明显差异干扰。对比试验表明,该研究 MPFN 模型对各类病虫害的平均识别准确率达到 93.18%, 性能优于其他粗粒度及细粒度深度学习方法;而平均单张处理时间为 61ms,能够满足农业生产实践中物联网各终端病虫 害细粒度图像识别需求,可为智能化病虫害预警防控提供技术应用参考,进而为保障农作物产量和品质安全提供基础。 [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Transactions of the Chinese Society of Agricultural Engineering is the property of Chinese Society of Agricultural Engineering and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)