Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Total flavonoids suppress lung cancer growth via the COX-2-mediated Wnt/β-catenin signaling pathway.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      The aim of the present study was to explore the anti-cancer effects of total flavonoids (TF) on lung cancer and to investigate the underlying mechanism. The inhibitory effect of TF on the proliferation of A549 cells in vitro was measured using an MTT assay. The apoptotic rate of TF-treated A549 cells was analyzed using flow cytometry and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling. Migration and invasion assays were performed to investigate the anti-migration effect of TF on A549 cells. Reverse-transcription quantitative PCR was used to analyze BCL2-like 2, BCL2, Bax, Bad, cyclooxygenase 2 (COX-2), Wnt and β-catenin mRNA expression levels in A549 cells. The in vivo anti-cancer effect of TF was investigated in a subcutaneous xenograft model of lung cancer in BALB/c nude mice. The results obtained in the present study revealed that TF exerted a significant inhibitory effect on the proliferation of A549 cells in a dose-dependent manner (P<0.01). TF induced apoptosis of A549 cells, which exhibited increased and decreased expression of pro- and anti- apoptotic genes, respectively. Furthermore, TF had a significant inhibitory effect on the migration and invasion of A549 cells (P<0.01). The mRNA expression levels of COX-2, Wnt and β-catenin were significantly downregulated in TF-treated A549 cells compared with controls. Additionally, treatment with TF inhibited tumor growth in mice, with a tumor inhibition rate of 64.07% compared with the controls. TF exhibited significant tumor inhibitory effects in vivo by promoting the apoptosis of tumor cells. In conclusion, the results suggested that TF may regulate lung cancer growth via the COX-2-Wnt/β-catenin signaling pathway. TF may serve as a novel anti-cancer agent for the treatment of lung cancer. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Oncology Letters is the property of Spandidos Publications UK Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)