Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum a-toxin.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Hong, Yeongjin1; Ohishi, Kazuhito1; Inoue, Norimitsu2; Kang, Ji Young1; Shime, Hiroaki3; Horiguchi, Yasuhiko3; Van Der Goot, F.Gisou4; Sugimoto, Nakaba5; Kinoshita, Taroh1
- المصدر:
EMBO Journal. 10/1/2002, Vol. 21 Issue 19, p5047-5056. 10p.
- الموضوع:
- معلومة اضافية
- نبذة مختصرة :
Aerolysin of the Gram-negative bacterium Aeromonas hydrophila consists of small (SL) and large (LL) lobes. The α-toxin of Gram-positive Clostridium septicum has a single lobe homologous to LL. These toxins bind to glycosylphosphatidylinositol (GPI)-anchored proteins and generate pores in the cell's plasma membrane. We isolated CHO cells resistant to aerolysin, with the aim of obtaining GPI biosynthesis mutants. One mutant unexpectedly expressed GPI-anchored proteins, but nevertheless bound aerolysin poorly and was 10-fold less sensitive than wild-type cells. A cDNA of N-acetylglucosamine transferase I (GnTI) restored the binding of aerolysin to this mutant. Therefore, N-glycan is involved in the binding. Removal of mannoses by α-mannosidase II was important for the binding of aerolysin. In contrast, the α-toxin killed GnTI-deficient and wild-type CHO cells equally, indicating that its binding to GPI-anchored proteins is independent of N-glycan. Because SL bound to wild-type but not to GnTI-deficient cells, and because a hybrid toxin consisting of SL and the β-toxin killed wild-type cells 10-fold more efficiently than GnTI- deficient cells, SL with its binding site for N-glycan contributes to the high binding affinity of aerolysin. [ABSTRACT FROM AUTHOR]
No Comments.