Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Efficient modeling of cable-pulley system with friction based on arbitrary-Lagrangian-Eulerian approach.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      In conventional modeling of a cable-pulley system, the cable must be finely meshed with Lagrangian elements for valid contact detections with pulleys, leading to extremely low efficiency. The sliding joint method based on the arbitrary-Lagrangian-Eulerian (ALE) formulation still lacks an efficient cable element, and in particular, modeling of friction between a sliding joint and the cable has not been studied. This paper presents efficient multi-body modeling of a cable-pulley system with friction. A variablelength cable element with a node movable along the cable, which is described with ALE, is developed to mesh the cable. A transitional cable element is then proposed to model the contact part of the cable by fixing its two nodes to the two corresponding locations of the pulley. Friction of the cable-pulley is derived as a simple law of tension decay and embedded in the multi-body system modeling. It is simplified as a generalized friction force acting only on the arc-length coordinate. This approach can use a rough mesh on the cable, and is free of contact detections, thus significantly saving computation time. Several examples are presented to validate the proposed method, and show its effectiveness in real engineering applications. [ABSTRACT FROM AUTHOR]