Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A Climate-Based Model Predicts the Spatial Distribution of the Lyme Disease Vector Ixodes scapularis in the United States.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- معلومة اضافية
- الموضوع:
- نبذة مختصرة :
An understanding of the spatial distribution of the black-legged tick, Ixodes scapularis, is a fundamental component in assessing human risk for Lyme disease in much of the United States. Although a county-level vector distribution map exists for the United States, its accuracy is limited by arbitrary categories of its reported presence. It is unknown whether reported positive areas can support established populations and whether negative areas are suitable for established populations. The steadily increasing range of I. scapularis in the United States suggests that all suitable habitats are not currently occupied. Therefore, we developed a spatially predictive logistic model for I. scapularis in the 48 conterminous states to improve the previous vector distribution map. We used ground-observed environmental data to predict the probability of established I. scapularis populations. The autologistic analysis showed that maximum, minimum, and mean temperatures as well as vapor pressure significantly contribute to population maintenance with an accuracy of 95% (p < 0.0001). A cutoff probability for habitat suitability was assessed by sensitivity analysis and was used to reclassify the previous distribution map. The spatially modeled relationship between I. scapularis presence and large-scale environmental data provides a robust suitability model that reveals essential environmental determinants of habitat suitability, predicts emerging areas of Lyme disease risk, and generates the future pattern of I. scapularis across the United States. [ABSTRACT FROM AUTHOR]
- نبذة مختصرة :
Copyright of Environmental Health Perspectives is the property of National Institute of Environmental Health Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.