Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Fine Particulate Matter Components and Emergency Department Visits for Cardiovascular and Respiratory Diseases in the St. Louis, Missouri--Illinois, Metropolitan Area.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
    • نبذة مختصرة :
      BACKGROUND: Given that fine particulate matter (≤ 2.5 µm; PM2.5) is a mixture of multiple components, it has been of high interest to identify its specific health-relevant physical and/or chemical features. OBJECTIVES: We conducted a time-series study of PM2.5 and cardiorespiratory emergency department (ED) visits in the St. Louis, Missouri--Illinois metropolitan area, using 2 years of daily PM2.5 and PM2.5 component measurements (including ions, carbon, particle-phase organic compounds, and elements) made at the St. Louis-Midwest Supersite, a monitoring site of the U.S. Environmental Protection Agency Supersites ambient air monitoring research program. METHODS: Using Poisson generalized linear models, we assessed short-term associations between daily cardiorespiratory ED visit counts and daily levels of 24 selected pollutants. Associations were estimated for interquartile range changes in each pollutant. To allow comparison of relationships among multiple pollutants and outcomes with potentially different lag structures, we used 3-day unconstrained distributed lag models controlling for time trends and meteorology. RESULTS: Considering results of our primary models, as well as sensitivity analyses and models assessing co-pollutant confounding, we observed robust associations of cardiovascular disease visits with 17α(H),21β(H)-hopane and congestive heart failure visits with elemental carbon. We also observed a robust association of respiratory disease visits with ozone. For asthma/wheeze, associations were strongest with ozone and nitrogen dioxide; observed associations of asthma/wheeze with PM2.5 and its components were attenuated in two-pollutant models with these gases. Differential measurement error due to differential patterns of spatiotemporal variability may have influenced patterns of observed associations across pollutants. CONCLUSIONS: Our findings add to the growing field examining the health effects of PM2.5 components. Combustion-related components of the pollutant mix showed particularly strong associations with cardiorespiratory ED visit outcomes. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Environmental Health Perspectives is the property of National Institute of Environmental Health Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)