نبذة مختصرة : As a high-frequency and essential type of special electromechanical equipment, a vertical elevator has a significant societal implication for their safe operation. The load-weighing module, serving as the core component for overload warning, is susceptible to precision degradation due to the nonlinear deformation of rubber buffers installed at the base of the elevator car. This deformation arises from the coupled effects of environmental factors such as temperature, humidity, and material aging, leading to potential safety risks including missed overload alarms and false empty status detections. To address the issue of accuracy deterioration in elevator load-weighing systems, this study proposes an online self-calibration method based on multimodal information fusion. A reference detection model is first constructed to map the relationship between applied load and the corresponding relative compression of the rubber buffers. Subsequently, displacement data from a draw-wire sensor are integrated with target detection model outputs, enabling real-time extraction of dynamic rubber buffers’ deformation characteristics under empty conditions. Based on the above, a displacement-based compensation term is derived to enhance the accuracy of load estimation. This is further supported by a dynamic error compensation mechanism and an online computation framework, allowing the system to self-calibrate without manual intervention. The proposed approach eliminates the dependency on manual tuning inherent in traditional methods and forms a highly robust solution for load monitoring. Field experiments demonstrate the effectiveness of the proposed method and the stability of the prototype system. The results confirm that the synergistic integration of multimodal perception and adaptive calibration technologies effectively resolves the challenge of load-weighing precision degradation under complex operating conditions, offering a novel technical paradigm for elevator safety monitoring.
No Comments.