نبذة مختصرة : This work is being carried out in the context of a health crisis and the need to optimise forest harvesting. As a result, a number of tools is being developed to help forest managers with their forestry planning.The goal of this work was to evaluate the potential of two LIDAR remote sensing campaigns to map and characterise forest disturbances of anthropogenic or natural origin in the Vercors. The target of this study was to identify which method would be most suitable for accurately mapping forest disturbances, based on field forest parameters and LIDAR dendrometric information. The field data consists of plots located in public forests with surveys carried out in 2010 and 2020. The LIDAR data dates from 2010 and 2021, the former from INRAE, the latter from IGN.Several methods were tested to estimate forest parameters (average diameter, basal area, stem density, volume, etc.) to obtain a map (overall view of disturbances). The Canopy Height Model (CHM) method focuses on calculating the height of trees and pixels in an area (a more precise view of disturbances). A categorisation system has been set up to separate the different types of disturbance identified, using threshold values and the Ripley K function.The mapping and characterisation of disturbances is fraught with problems, but some of the results are satisfactory and point to possible improvements for the future. ; Ce travail s’inscrit dans un contexte de crise sanitaire et d’optimisation des coupes en forêt.Par conséquent, certains outils sont développés pour aider les gestionnaires dans la planification forestière. L’objectif de ce travail a été d’évaluer le potentiel de deux campagnes de télédétection LIDAR pour cartographier et caractériser les perturbations forestières d'origine anthropique ou naturelle dans le Vercors.Cette étude a eu pour but, en s’appuyant sur des paramètres forestiers de terrain et des informations dendrométriques LIDAR, d’identifier quelle méthode serait la plus adaptée pour cartographier avec précision les perturbations ...
No Comments.