نبذة مختصرة : The rational design and fabrication of functional and feasible adsorbents with enhanced adsorption properties for pollutant removal remain challenging. Here, to achieve efficient adsorption of dyes, a radial-freezing technique was employed to develop freeze-dried bio-nanocomposites in the form of aerogel beads composed of cellulose nanofibers, protein nanofibers, and chitosan (CPCs). This strategy led to the formation of a spherical aerogel with a dandelion-like structure in the radial cross-section. FE-SEM micrographs of the aerogel beads revealed a highly porous morphology with a network of interconnected pores, allowing for the effective adsorption of liquids. The characterization results of the functional aerogel beads showed a remarkable ability to adsorb various cationic and anionic azo dyes. The maximum adsorption capacity of 1349.7 ± 34.36 mg g −1 and removal efficiency of nearly 100% in the initial 1000 mg L −1 Congo Red (CR) solution were obtained for CPCs aerogel beads. The resulting adsorption experimental data were fit by the sip isotherm and pseudo-second-order models. The porous structure of the CPCs aerogel bead enhanced the diffusion of dye molecules into the pores and inner surface. Furthermore, combined with the analysis results of FT-IR spectroscopy and XPS, multiple adsorption mechanisms (strong electrostatic interactions, hydrogen bonds, CH-π and π-π bonds) were ascribed between the CPCs composite and dye cations. It is believed that our CPCs aerogel beads can be regarded as a sustainable green bio-adsorbent for water remediation.
No Comments.