Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Physiologic investigations of cartilage fatigue failure and a laser technique for inducing collagen crosslinking for wear resistance

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2024
    • Collection:
      Columbia University: Academic Commons
    • نبذة مختصرة :
      Osteoarthritis is a debilitating joint disease characterized by the degradation of articular cartilage due to long term wear or acute injury. OA can lead to pain, limited mobility, and stiffness in the joint, and current treatment options often require invasive surgery or are limited to corrective attempts at mitigating pain. Due in part to the complexity of the disease and lack of holistic understanding of its advancement, there is no known treatment to halt or reverse the effects of OA progression in the joint. In order to address this need, the underlying mechanisms that drive the mechanical degradation of cartilage structure in its progression must be determined. The objective of this dissertation is to (1) investigate the mechanical breakdown of cartilage through fatigue failure in physiologically relevant models and (2) to introduce a minimally invasive method for increasing the mechanical integrity of cartilage in an effort to reverse the effects of OA. In order to classify the mechanical mediation of wear in OA disease pathology, wear progression in human articular cartilage must be fully characterized. Human articular cartilage exhibits a remarkable resilience to wear during frictional sliding, making it difficult to induce damage in the tissue in experimental models. Previous work established reciprocal compressive stresses, and not frictional stresses, as the primary initiator of delamination fatigue wear in immature bovine cartilage. In Chapter 2, we tested the hypothesis that reciprocal compressive stresses could induce fatigue wear in human articular cartilage and thus establish a reproducible and characterizable model of wear induction in human tissue. Human articular cartilage was subjected to 24 hours of frictional sliding in two contact configurations: stationary contact area (SCA), and migrating contact area (MCA). Five samples were tested in the SCA configuration, which induces frictional stresses, and five were tested in the MCA configuration, which induces reciprocal compressive stresses ...
    • الرقم المعرف:
      10.7916/btat-fy23
    • الدخول الالكتروني :
      https://doi.org/10.7916/btat-fy23
    • الرقم المعرف:
      edsbas.A98108E8