Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Quenched universality for deformed Wigner matrices

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Cipolloni, Giorgio; Erdös, László; Schröder, Dominik J
  • المصدر:
    Cipolloni G, Erdös L, Schröder DJ. Quenched universality for deformed Wigner matrices. Probability Theory and Related Fields . 2023;185:1183–1218. doi: 10.1007/s00440-022-01156-7
  • الموضوع:
  • نوع التسجيلة:
    article in journal/newspaper
  • اللغة:
    English
  • معلومة اضافية
    • بيانات النشر:
      Springer Nature
    • الموضوع:
      2023
    • Collection:
      IST Austria Research Explorer (Institute of Science and Technology)
    • نبذة مختصرة :
      Following E. Wigner’s original vision, we prove that sampling the eigenvalue gaps within the bulk spectrum of a fixed (deformed) Wigner matrix H yields the celebrated Wigner-Dyson-Mehta universal statistics with high probability. Similarly, we prove universality for a monoparametric family of deformed Wigner matrices H+xA with a deterministic Hermitian matrix A and a fixed Wigner matrix H, just using the randomness of a single scalar real random variable x. Both results constitute quenched versions of bulk universality that has so far only been proven in annealed sense with respect to the probability space of the matrix ensemble.
    • Relation:
      info:eu-repo/semantics/altIdentifier/issn/0178-8051; info:eu-repo/semantics/altIdentifier/issn/1432-2064; info:eu-repo/semantics/altIdentifier/wos/000830344500001; info:eu-repo/semantics/altIdentifier/arxiv/2106.10200
    • الدخول الالكتروني :
      https://doi.org/10.1007/s00440-022-01156-7
      https://research-explorer.ista.ac.at/record/11741
      https://research-explorer.ista.ac.at/download/11741/14054
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.817DA096