menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Hemforth, Lisa; Couvy-Duchesne, Baptiste; de Matos, Kevin; Brianceau, Camille; Joulot, Matthieu; Banaschewski, Tobias; Bokde, Arun, L W; Desrivières, Sylvane; Flor, Herta; Grigis, Antoine; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Brühl, Rüdiger; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Artiges, Eric; Papadopoulos, Dimitri; Lemaitre, Herve; Paus, Tomas; Poustka, Luise; Hohman, Sarah; Holz, Nathalie; Fröhner, Juliane H.; Smolka, Michael, N; Vaidya, Nilakshi; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Büchel, Christian; Poline, Jean-Baptiste; Itterman, Bernd; Frouin, Vincent; Martin, Alexandre; Cury, Claire; Colliot, Olivier
- المصدر:
ISSN: 2766-905X ; Journal of Machine Learning for Biomedical Imaging ; https://hal.science/hal-04635141 ; Journal of Machine Learning for Biomedical Imaging, 2024, 2, pp.1-26. ⟨10.59275/j.melba.2024-3d4e⟩.- الموضوع:
- نوع التسجيلة:
article in journal/newspaper- اللغة:
English - المصدر:
- معلومة اضافية
- Contributors: Institut du Cerveau = Paris Brain Institute (ICM); Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière AP-HP; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); CHU Pitié-Salpêtrière AP-HP; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU); Algorithms, models and methods for images and signals of the human brain = Algorithmes, modèles et méthodes pour les images et les signaux du cerveau humain ICM Paris (ARAMIS); Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière AP-HP; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de Sorbonne Université; Centre Inria de Paris; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Paris; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); The University of Queensland (UQ All campuses : Brisbane, Dutton Park Gatton, Herston, St Lucia and other locations ); Universität Heidelberg Heidelberg = Heidelberg University; Trinity College Dublin; King‘s College London; University of Mannheim = Universität Mannheim; IFR49 - Neurospin - CEA; Commissariat à l'énergie atomique et aux énergies alternatives (CEA); University of Vermont Burlington; University of Nottingham, UK (UON); Charité - UniversitätsMedizin = Berlin University Medicine; Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin (HU Berlin); Berlin Institute of Health (BIH); Physikalisch-Technische Bundesanstalt Berlin (PTB); Trajectoires développementales en psychiatrie : mesures et modélisations (ERL Inserm U1299); CB - Centre Borelli - UMR 9010 (CB); Service de Santé des Armées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-Université Paris Cité (UPCité)-Service de Santé des Armées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-Université Paris Cité (UPCité); EPS Barthélemy Durand Etampes; Institut des Maladies Neurodégénératives Bordeaux (IMN); Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS); CHU Sainte Justine Montréal; University of Toronto; University Medical Center Göttingen (UMG); Technische Universität Dresden = Dresden University of Technology (TU Dresden); Fudan University Shanghai; Universitaetsklinikum Hamburg-Eppendorf = University Medical Center Hamburg-Eppendorf Hamburg (UKE); McGill University = Université McGill Montréal, Canada; Neuroimagerie: méthodes et applications (EMPENN); Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Inria de l'Université de Rennes; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAL, IMAGE ET LANGAGE (IRISA-D6); Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT); The research leading to these results has received funding from the French government under management of Agence Nationale de la Recherche as part of the ”Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6). BCD is supported by INRIA and a CJ Martin fellowship (NHMRC app 1161356). The Imagen study is supported by the following sources: the European Union-funded FP6 Integrated Project IMAGEN (Reinforcement-related behaviour in normal brain function and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (Brain network based stratification of reinforcement-related disorders) (695313), Human Brain Project (HBP SGA 2, 785907, and HBP SGA 3, 945539), the Medical Research Council Grant ’c-VEDA’ (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the National Institute of Health (NIH) (R01DA049238, A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers), the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministerium fur Bildung und Forschung(BMBF grants 01GS08152; 01EV0711; Forschungsnetz AERIAL 01EE1406A, 01EE1406B; Forschungsnetz IMAC-Mind 01GL1745B), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-2, SFB 940, TRR 265, NE 1383/14-1), the Medical Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1), the National Institutes of Health (NIH) funded ENIGMA (grants 5U54EB020403-05 and 1R56AG058854-01), NSFC grant 82150710554 and European Union funded project ‘environMENTAL’, grant no: 101057429. Further support was provided by grants from: - the ANR (ANR-12-SAMA-0004, AAPG2019 - GeBra), the Eranet Neuron (AF12-NEUR0008-01 - WM2NA; and ANR-18-NEUR00002-01 - ADORe), the Fondation de France (00081242), the Fondation pour la Recherche Médicale (DPA20140629802), the Mission Interministérielle de Lutte-contre-les-Drogues-et-les- Conduites-Addictives (MILDECA), the Assistance-Publique-Hôpitaux-de Paris and INSERM (interface grant), Paris Sud University IDEX 2012, the Fondation de l’Avenir (grant AP-RM-17-013 ), the Fédération pour la Recherche sur le Cerveau, the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797), U.S.A. (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1) and by NIH Consortium grant U54 EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence. The QTIM study was supported by the National Institute of Child Health and Human Development (R01 HD050735), and the National Health and Medical Research Council (NHMRC 486682, 1009064), Australia. The QTAB study was funded by the National Health and Medical Research Council (NHMRC APP1078756), Australia. The QTAB study acknowledges the Queensland Twin Registry Study (https://www.qimrberghofer.edu.au/study/queensland-twin-registry-study) for generously sharing database information for recruitment. The QTAB study was further facilitated through access to Twins Research Australia, a national resource supported by aCentre of Research Excellence Grant (ID: 1078102) from the National Health and Medical Research Council. We acknowledge access to the facilities and expertise of the CIBM Center for Biomedical Imaging, a Swiss research center of excellence founded and supported by Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Ecole polytechnique fédérale de Lausanne (EPFL), University of Geneva (UNIGE) and Geneva University Hospitals (HUG).; ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019); ANR-12-SAMA-0004,ADODEP,Dépression à l'Adolescence: Structure cérébrale et myélinisation(2012); ANR-10-IAHU-0006,IHU-A-ICM,Institut de Neurosciences Translationnelles de Paris(2010); European Project: 39513,IMAGEN; European Project: 695313,ERC-2015-AdG,ERC-2015-AdG,STRATIFY(2016)
- بيانات النشر: CCSD
Melba editors - الموضوع: 2024
- Collection: Archive ouverte du Service de Santé des Armées (HAL)
- نبذة مختصرة : International audience ; Incomplete Hippocampal Inversion (IHI), sometimes called hippocampal malrotation, is an atypical anatomical pattern of the hippocampus found in about 20% of the general population. IHI can be visually assessed on coronal slices of T1 weighted MR images, using a composite score that combines four anatomical criteria. IHI has been associated with several brain disorders (epilepsy, schizophrenia). However, these studies were based on small samples. Furthermore, the factors (genetic or environmental) that contribute to the genesis of IHI are largely unknown. Large-scale studies are thus needed to further understand IHI and their potential relationships to neurological and psychiatric disorders. However, visual evaluation is long and tedious, justifying the need for an automatic method. In this paper, we propose, for the first time, to automatically rate IHI. We proceed by predicting four anatomical criteria, which are then summed up to form the IHI score, providing the advantage of an interpretable score. We provided an extensive experimental investigation of different machine learning methods and training strategies. We performed automatic rating using a variety of deep learning models (”conv5-FC3”, ResNet and ”SECNN”) as well as a ridge regression. We studied the generalization of our models using different cohorts and performed multi-cohort learning. We relied on a large population of 2,008 participants from the IMAGEN study, 993 and 403 participants from the QTIM and QTAB studies as well as 985 subjects from the UKBiobank. We showed that deep learning models outperformed a ridge regression. We demonstrated that the performances of the ”conv5-FC3” network were at least as good as more complex networks while maintaining a low complexity and computation time. We showed that training on a single cohort may lack in variability while training on several cohorts improves generalization (acceptable performances on all tested cohorts including some that are not included in training). The trained ...
- Relation: info:eu-repo/grantAgreement//39513/EU/Reinforcement-related behaviour in normal brain function and psychopathology/IMAGEN; info:eu-repo/grantAgreement//695313/EU/Brain network based stratification of mental illness/STRATIFY
- الرقم المعرف: 10.59275/j.melba.2024-3d4e
- الدخول الالكتروني : https://hal.science/hal-04635141
https://hal.science/hal-04635141v2/document
https://hal.science/hal-04635141v2/file/Hemforth_IHI_rating_MELBA%20%288%29.pdf
https://doi.org/10.59275/j.melba.2024-3d4e - Rights: http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
- الرقم المعرف: edsbas.7B1E9188
- Contributors:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.