Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Processing and analysis of 2.5D face models for non-rigid mapping based face recognition using differential geometry tools ; Traitement et analyse des modèles 2.5 de visage utilisant les outils de la géométrie différentielle pour la reconnaissance faciale basée sur l'appariement non rigide

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Extraction de Caractéristiques et Identification (imagine); Pôle informatique graphique et géométrie (IGG); Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS); Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS); Ecole Centrale de Lyon; Liming Chen; Mohsen Ardabilian
    • بيانات النشر:
      CCSD
    • الموضوع:
      2011
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      This Ph.D thesis work is dedicated to 3D facial surface analysis, processing as well as to the newly proposed 3D face recognition modality, which is based on mapping techniques. Facial surface processing and analysis is one of the most important steps for 3Dface recognition algorithms. Automatic anthropometric facial features localization also plays an important role for face localization, face expression recognition, face registration ect., thus its automatic localization is a crucial step for 3D face processing algorithms. In this work we focused on precise and rotation invariant landmarks localization, which are later used directly for face recognition. The landmarks are localized combining local surface properties expressed in terms of differential geometry tools and global facial generic model, used for face validation. Since curvatures, which are differential geometry properties, are sensitive to surface noise, one of the main contributions of this thesis is a modification of curvatures calculation method. The modification incorporates the surface noise into the calculation method and helps to control smoothness of the curvatures. Therefore the main facial points can be reliably and precisely localized (100% nose tip localization using 8 mm precision)under the influence of rotations and surface noise. The modification of the curvatures calculation method was also tested under different face model resolutions, resulting in stable curvature values. Finally, since curvatures analysis leads to many facial landmark candidates, the validation of which is time consuming, facial landmarks localization based on learning technique was proposed. The learning technique helps to reject incorrect landmark candidates with a high probability, thus accelerating landmarks localization. Face recognition using 3D models is a relatively new subject, which has been proposed to overcome shortcomings of 2D face recognition modality. However, 3Dface recognition algorithms are likely more complicated. Additionally, since 3D face ...
    • Relation:
      NNT: 2011ECDL0020
    • الدخول الالكتروني :
      https://theses.hal.science/tel-00675988
      https://theses.hal.science/tel-00675988v1/document
      https://theses.hal.science/tel-00675988v1/file/TH_T2226_pszeptycki.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6A86E2D4