Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A phase transition in block-weighted random maps

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Unité de Mathématiques Pures et Appliquées (UMPA-ENSL); École normale supérieure de Lyon (ENS de Lyon); Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS); Laboratoire d'Informatique Gaspard-Monge (LIGM); École nationale des ponts et chaussées (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
    • بيانات النشر:
      CCSD
      Institute of Mathematical Statistics (IMS)
    • الموضوع:
      2024
    • Collection:
      École des Ponts ParisTech: HAL
    • نبذة مختصرة :
      International audience ; We consider the model of random planar maps of size $n$ biased by a weight $u>0$ per $2$-connected block, and the closely related model of random planar quadrangulations of size $n$ biased by a weight $u>0$ per simple component. We exhibit a phase transition at the critical value $u_C=9/5$. If $u < u_C $, a condensation phenomenon occurs: the largest block is of size $\Theta(n)$. Moreover, for quadrangulations we show that the diameter is of order $n^{1/4}$, and the scaling limit is the Brownian sphere. When $u > u_C$, the largest block is of size $\Theta(\log(n))$, the scaling order for distances is $n^{1/2}$, and the scaling limit is the Brownian tree. Finally, for $u=u_C$, the largest block is of size $\Theta(n^{2/3})$, the scaling order for distances is $n^{1/3}$, and the scaling limit is the stable tree of parameter $3/2$.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2302.01723; ARXIV: 2302.01723
    • الرقم المعرف:
      10.1214/24-EJP1089
    • الدخول الالكتروني :
      https://univ-eiffel.hal.science/hal-04491449
      https://univ-eiffel.hal.science/hal-04491449v1/document
      https://univ-eiffel.hal.science/hal-04491449v1/file/FleuratSalvy_arxiv.pdf
      https://doi.org/10.1214/24-EJP1089
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.477A8C2D