Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      The rheological and drug release behavior of biopolymer nanocomposite gels based on the cellulose derivatives, formulated as the bioadhesive drug delivery platforms, were investigated. The bioadhesive gel is composed of the microcrystalline cellulose, sodium carboxymethyl cellulose and phosphate buffered saline (pH = 7.4 at 20 °C) as the dissolution and release medium. The reinforcing nanofillers such as MMT-clay, fumed porous silica and porous starch were used as additives in the nanogel bioadhesive. The constant steady state viscosities of this nanogels upon incorporation of various nanofillers into the systems is the sign of structural stability. Hence, this system is suitable for use in the controlled drug delivery systems in contact with the biological tissues. Based on the rheological measurements, the shear flow properties (i.e. zero shear viscosity and yield stress) were influenced by the concentration of polymers and nanoparticles. The results indicate that the nonlinear rheological data are fitted properly by the Giesekus model. Furthermore, the results showed that the nonlinear viscoelastic parameters (λ and α) are highly affected by the biogel and nanoparticles concentrations. Finally, the drug release was measured, and the results indicated that the biopolymer-clay nanocomposites have appropriate release pattern as the release is better controlled compared to the other nanogel formulations. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Pharmaceutical Development & Technology is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)