Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Optimisation of the Production and Bleaching Process for a New Laccase from Madurella mycetomatis, Expressed in Pichia pastoris: from Secretion to Yielding Prominent.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: United States NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
    • بيانات النشر:
      Publication: [Cham] : Springer
      Original Publication: Totowa, NJ : Humana Press, c1994-
    • الموضوع:
    • نبذة مختصرة :
      Laccases are polyphenol oxidoreductases used in a number of industrial applications. Due to the increasing demand for these "green catalysis" enzymes, the identification and biochemical characterisation of their novel properties is essential. In our study, cloned Madurella mycetomatis laccase (mmlac) genes were heterologously expressed in the methylotrophic yeast host Pichia pastoris. The high yield of the active recombinant protein in P. pastoris demonstrates the efficiency of a reliably constructed plasmid to express the laccase gene. The optimal biochemical conditions for the successfully expressed MmLac enzyme were identified. Detailed structural properties of the recombinant laccase were determined, and its utility in decolourisation and textile bleaching applications was examined. MmLac demonstrates good activity in an acidic pH range (4.0-6.0); is stable in the presence of cationic metals, organic solvents and under high temperatures (50-60 °C); and is stable for long-term storage at - 20 °C and - 80 °C for up to eight weeks. The structural analysis revealed that the catalytic residues are partially similar to other laccases. MmLac resulted in an increase in whiteness, whilst demonstrating high efficiency and stability and requiring the input of fewer chemicals. The performance of this enzyme makes it worthy of investigation for use in textile biotechnology applications, as well as within environmental and food technologies.
    • Comments:
      Erratum in: Mol Biotechnol. 2020 Nov 12;:. (PMID: 33180259)
    • References:
      Messerschmidt, A. (1990). Modelling and structural relationships. Enzyme, 352, 341–352.
      Matera, I., Gullotto, A., Tilli, S., Ferraroni, M., Scozzafava, A., & Briganti, F. (2008). Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorganica Chimica Acta, 361, 4129–4137.
      Moreno, A. D., Ibarra, D., Eugenio, M. E., & Tomás-Pejó, E. (2019). Laccases as versatile enzymes: From industrial uses to novel applications. Journal of Chemical Technology & Biotechnology, 95, 481–494.
      Wang, T. N., Lu, L., Wang, J. Y., Xu, T. F., Li, J., & Zhao, M. (2015). Enhanced expression of an industry applicable CotA laccase from Bacillus subtilis in Pichia pastoris by non-repressing carbon sources together with pH adjustment: Recombinant enzyme characterization and dye decolorization. Process Biochemistry, 50, 97–103.
      Yang, Q., Zhang, M., Zhang, M., Wang, C., Liu, Y., Fan, X., et al. (2018). Characterization of a novel, cold-adapted, and thermostable laccase-like enzyme with high tolerance for organic solvents and salt and potent dye decolorization ability, derived from a marine metagenomic library. Frontiers in Microbiology, 9, 2998. (PMID: 305686476290062)
      Patrik, J. H., Sreedhar, K., Timothy, Y. J., Jason, R. T., & Ursula, K. (2006). Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS Journal, 273, 2308–2326.
      Van de Sande, W. W. J., de Kat, J., Coppens, J., Ahmed, A. O. A., Fahal, A., Verbrugh, H., et al. (2007). Melanin biosynthesis in Madurella mycetomatis and its effect on susceptibility to itraconazole and ketoconazole. Microbes and Infection, 9, 1114–1123. (PMID: 17644456)
      Ahmed, S. A., van de Sande, W. W. J., Stevens, D. A., Fahal, A., van Diepeningen, A. D., Menken, S. B. J., et al. (2014). Revision of agents of black-grain eumycetoma in the order Pleosporales. Persoonia, 33, 141–154. (PMID: 257375974312930)
      Piscitelli, A., Pezzella, C., Giardina, P., Faraco, V., & Giovanni, S. (2010). Heterologous laccase production and its role in industrial applications. Bioengineered Bugs, 1(4), 252–262. (PMID: 213270573026464)
      Yang, J., Li, W., Bun Ng, T., Deng, X., Lin, J., & Ye, X. (2017). Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Frontiers in Microbiology, 8, 832. (PMID: 285598805432550)
      Vogl, T., & Glieder, A. (2013). Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnology, 30, 385–404. (PMID: 23165100)
      Juturu, V., & Wu, J. C. (2018). Heterologous protein expression in Pichia pastoris: Latest research progress and applications. ChemBioChem, 18, 1–16.
      Antošová, Z., & Sychrová, H. (2016). Yeast hosts for the production of recombinant laccases: A review. Molecular Biotechnology, 58, 93–116. (PMID: 26698313)
      Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
      Bronikowski, A., Hagedoorn, P. L., Koschorreck, K., & Urlacher, V. B. (2017). Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express, 7, 73. (PMID: 283577845371579)
      Yin, Q., Zhou, G., Peng, C., Zhang, Y., Kües, U., Liu, J., et al. (2019). The first fungal laccase with an alkaline pH optimum obtained by directed evolution and its application in indigo dye decolorization. AMB Express, 9, 151. (PMID: 315352956751238)
      Lu, L., Zhao, M., Wang, T. N., Zhao, L. Y., Du, M. H., Li, T. L., et al. (2012). Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresource Technology, 115, 35–40. (PMID: 21868217)
      Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43, 174–181.
      Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. (2011). Higgins, fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Molecular Systems Biology, 7, 539–539. (PMID: 219888353261699)
      Rice, P., Longden, L., & Bleasby, A. (2000). EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 16, 276–277. (PMID: 10827456)
      Garnier, J., Osguthorpe, D. J., & Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology, 120, 97–120. (PMID: 642007)
      Kallio, J. P., Auer, S., Jänis, J., Andberg, M., Kruus, K., Rouvinen, J., et al. (2009). Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. Journal of Molecular Biology, 392, 895–909. (PMID: 19563811)
      Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., et al. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791. (PMID: 193997802760638)
      Ayed, L., Chaieb, K., Cheref, A., & Bakhrouf, A. (2010). Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination, 260, 137–146.
      AATCC American Association of Textile Chemists and Colorists AATCC, (2015) Technical Manual, 90.
      Saraf, N. M., Sheth, G. N., & Sabale, A. G. (2009). Role of wetting agents and detergents in bleaching. Colourage, 56, 87–91.
      Grancarić, A. M., Pušić, T., & Tarbuk, A. (2006). Enzymatic scouring for better textile properties of knitted cotton fabrics. Journal of Natural Fibers, 3, 189–197.
      Lukács, G. (1989). Whiteness—A feasible method for its evaluation. Measurement, 7, 77–84.
      Cázares-García, S. V., Vázquez-Garcidueñas, M. S., & Vázquez-Marrufo, G. (2013). Structural and phylogenetic analysis of laccases from Trichoderma: A bioinformatic approach. PLoS ONE, 8, e55295. (PMID: 233831423561346)
      Kiiskinen, L. L., & Saloheimo, M. (2004). Molecular cloning and expression in Saccharomyces cerevisiae of laccase gene from the Ascomycete Melanocarpus albomyces. Applied and Environmental Microbiology, 70, 137–144. (PMID: 14711635321277)
      Mate, D. M., Gonzalez-Perez, D., Kittl, R., Ludwig, R., & Alcalde, M. (2013). Functional expression of a blood tolerant laccase in Pichia pastoris. BMC Biotechnology, 13, 1–12.
      Mtibaà, R., Barriuso, J., de Eugenio, L., Aranda, E., Belbahri, L., Nasri, M., et al. (2018). Purification and characterization of a fungal laccase from the Ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. International Journal of Biological Macromolecules, 120, 1744–1751. (PMID: 30268749)
      Kalyani, D., Tiwari, M. K., Li, J., Kim, S. C., Kalia, V. C., Kang, Y. C., et al. (2015). A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS ONE, 10, e0120156. (PMID: 257819454363317)
      Yang, Y., Ding, Y., Liao, X., & Cai, Y. (2013). Purification and characterization of a new laccase from Shiraia sp. SUPER-H168. Process Biochemistry, 48, 351–357.
      Kittl, R., Mueangtoom, K., Gonaus, C., Khazaneh, S. T., Sygmund, C., Haltrich, D., et al. (2012). A chloride tolerant laccase from the plant pathogen Ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. Journal of Biotechnology, 157, 304–314. (PMID: 22178779)
      Ben Younes, S., & Sayadi, S. (2011). Purification and characterization of a novel trimeric and thermotolerant laccase produced from the Ascomycete Scytalidium thermophilum strain. Journal of Molecular Catalysis B: Enzymatic, 73, 35–42.
      Wu, Y. R., Luo, Z. H., Kwok-Kei, C. R., & Vrijmoed, L. L. P. (2010). Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresource Technology, 101, 9772–9777. (PMID: 20716485)
      Junghanns, C., Pecyna, M. J., Böhm, D., Jehmlich, N., Martin, C., Von Bergen, M., et al. (2009). Biochemical and molecular genetic characterisation of a novel laccase produced by the aquatic Ascomycete Phoma sp. UHH 5-1-03. Applied Microbiology and Biotechnology, 84, 1095–1105. (PMID: 19455326)
      Bulter, T., Alcalde, M., Sieber, V., Meinhold, P., Schlachtbauer, C., & Arnold, F. H. (2003). Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Applied and Environmental Microbiology, 69, 987–995. (PMID: 12571021143632)
      Guo, X., Zhou, S., Wang, Y., Song, J., Wang, H., Kong, D., et al. (2016). Characterization of a highly thermostable and organic solvent-tolerant copper-containing polyphenol oxidase with dye-decolorizing ability from Kurthia huakuii LAM0618T. PLoS ONE, 11(10), e0164810. (PMID: 277413245065135)
      Ernst, H. A., Jørgensen, L. J., Bukh, C., Piontek, K., Plattner, D. A., Østergaard, L. H., et al. (2018). A comparative structural analysis of the surface properties of asco-laccases. PLoS ONE, 13, 1–27.
      Srinivasan, C., D’Souza, T. M., Boominathan, K., & Reddy, C. A. (1995). Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Applied and Environmental Microbiology, 61, 4274–4277. (PMID: 165351821388647)
      Liu, H., Tong, C., Du, B., Liang, S., & Lin, Y. (2015). Expression and characterization of LacMP, a novel fungal laccase of Moniliophthora perniciosa FA553. Biotechnology Letters, 37, 1829–1835. (PMID: 26093604)
      Gu, C., Zheng, F., Long, L., Wang, J., & Ding, S. (2014). Engineering the expression and characterization of two novel laccase isoenzymes from Coprinus comatus in Pichia pastoris by fusing an additional ten amino acids tag at N-terminus. PLoS ONE, 9, e93912. (PMID: 247101093977997)
      Kallio, J. P., Gasparetti, C., Andberg, M., Boer, H., Koivula, A., Kruus, K., et al. (2011). Crystal structure of an Ascomycete fungal laccase from Thielavia arenaria–common structural features of asco-laccases. The FEBS journal, 278(13), 2283–2295. (PMID: 21535408)
      Andberg, M., Hakulinen, N., Auer, S., Saloheimo, M., Koivula, A. R., et al. (2009). Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. The FEBS Journal, 276(21), 6285–6300. (PMID: 19780817)
      Looser, V., Bruhlmann, B., Bumbak, F., Stenger, C., Costa, M., Camattari, A., et al. (2014). Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnology Advances, 33, 1177–1193.
      Li, Z., Xiong, F., Lin, Q., D’Anjou, M., Daugulis, A. J., Yang, D. S. C., et al. (2001). Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expression and Purification, 21, 438–445. (PMID: 11281719)
      Stajić, M., Persky, L., Hadar, Y., Friesem, D., Duletić-Laušević, S., Wasser, S. P., et al. (2006). Effect of copper and manganese ions on activities of laccase and peroxidases in three Pleurotus species grown on agricultural wastes. Applied Biochemistry and Biotechnology, 128, 87–96. (PMID: 16415481)
      Garg, N., Bieler, N., Kenzom, T., Chhabra, M., Ansorge-Schumacher, M., & Mishra, S. (2012). Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnology, 12, 75. (PMID: 230921933558336)
      Wang, B., Wang, X., Tian, Y., Li, Z., Gao, J., Yan, Y., et al. (2016). Heterologous expression and characterization of a laccase from Laccaria bicolor in Pichia pastoris. Biotechnology and Biotechnological Equipment, 30, 63–68.
      Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., et al. (2002). Crystal structure of a four-copper laccase complexed with an arylamine: Insights into substrate recognition and correlation with kinetics. Biochemistry, 41, 7325–7333. (PMID: 12044164)
      Kaliwal, B. B., & Vantamuri, A. B. (2016). Purification and characterization of laccase from Marasmius species BBKAV79 and effective decolorization of selected textile dyes. 3 Biotech, 6, 189. (PMID: 283302615010537)
      Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366. (PMID: 27497312)
      Manavalan, T., Manavalan, A., & Heese, K. (2015). Characterization of lignocellulolytic enzymes from white-rot fungi. Current Microbiology, 70, 485–498. (PMID: 25487116)
      Zhou, C., Dong, A., Wang, Q., Yu, Y., Fan, X., Cao, Y., et al. (2017). Effect of common metal ions and anions on laccase catalysis of guaiacol and lignocellulosic fiber. BioResources, 12, 5102–5117.
      Jones, S. M., & Solomon, E. I. (2015). Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences, 72, 869–883. (PMID: 25572295)
      Champagne, P. P., Nesheim, M. E., & Ramsay, J. A. (2013). A mechanism for NaCl inhibition of Reactive Blue 19 decolorization and ABTS oxidation by laccase. Applied Microbiology and Biotechnology, 97, 6263–6269. (PMID: 23129183)
      Kepp, K. P. (2015). Halide binding and inhibition of laccase copper clusters: The role of reorganization energy. Inorganic Chemistry, 54, 476–483. (PMID: 25532722)
      Enaud, E., Trovaslet, M., Naveau, F., Decristoforo, A., Bizet, S., Vanhulle, S., et al. (2011). Laccase chloride inhibition reduction by an anthraquinonic substrate. Enzyme and Microbial Technology, 49, 517–525. (PMID: 22142726)
      Rodakiewicz-Nowak, J., Kasture, S. M., Dudek, B., & Haber, J. (2011). Effect of various water-miscible solvents on enzymatic activity of fungal laccases. Journal of Molecular Catalysis B: Enzymatic, 11, 1–11.
      Wu, M. H., Lin, M. C., Lee, C. C., Yu, S. M., Wang, A. H. J., & Ho, T. H. D. (2019). Enhancement of laccase activity by pre-incubation with organic solvents. Scientific Reports, 9, 9754. (PMID: 312783186611822)
      Afreen, S., Shamsi, T. N., Baig, M. A., Ahmad, N., Fatima, S., Qureshi, M. I., et al. (2017). A novel multicopper oxidase (laccase) from Cyanobacteria: Purification, characterization with potential in the decolorization of anthraquinonic dye. PLoS ONE, 12, e0175144. (PMID: 283842185383238)
      Hakulinen, N., Kiiskinen, L. L., Kruus, K., Saloheimo, M., Paanen, A., Koivula, A., et al. (2002). Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nature Structural Biology, 9, 601–605. (PMID: 12118243)
      Dai, Y., Yao, J., Song, Y., Liu, X., Wang, S., & Yuan, Y. (2016). Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water. Journal of Hazardous Materials, 317, 485–493. (PMID: 27341377)
      Baldrian, P. (2006). Fungal laccases-occurrence and properties. FEMS Microbiology Reviews, 30, 215–242. (PMID: 16472305)
      Xu, F. (1996). Oxidation of phenols, anilines, and benzenethiols by fungal laccases: Correlation between activity and redox potentials as well as halide inhibition. Biochemistry, 35, 7608–7614. (PMID: 8652543)
      Thurston, C. F. (1996). The structure and function of fungal laccases. Microbiology, 140, 19–26.
      Eggert, C., Temp, U., & Eriksson, K. L. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Applied and Environmental Microbiology, 62(4), 1151–1158. (PMID: 8919775167880)
      Abdel-Halim, E. S. (2012). Simple and economic bleaching process for cotton fabric. Carbohydrate Polymers, 88, 1233–1238.
      Abou-Okeil, A., El-Shafie, A., & El Zawahry, M. M. (2010). Ecofriendly laccase-hydrogen peroxide/ultrasound-assisted bleaching of linen fabrics and its influence on dyeing efficiency. Ultrasonics Sonochemistry, 17, 383–390. (PMID: 19748814)
      Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., De Los, H., et al. (2019). Laccases: structure, function, and potential application in water bioremediation. Microbial Cell Factories, 18, 200. (PMID: 317270786854816)
      Rodríguez-Couto, S. (2019). Fungal laccase: A versatile enzyme for biotechnological applications. Recent advancement in white biotechnology through fungi. Cham: Springer.
      Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Cavaco-Paulo, A., & Gubitz, G. M. (2000). Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and Environmental Microbiology, 66, 3357–3362. (PMID: 1091979192155)
      Deska, M., & Kończak, B. (2019). Immobilized fungal laccase as “green catalyst” for the decolourization process-state of the art. Process Biochemistry, 84, 112–123.
      Nyanhongo, G. S., Gomes, J., Gübitz, G. M., Zvauya, R., Read, J., & Steiner, W. (2002). Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Research, 36, 1449–1456. (PMID: 11996335)
      Sen, S. K., Raut, S., Bandyopadhyay, P., & Raut, S. (2016). Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 30, 112–133.
      Tzanov, T., Basto, C., Gübitz, G. M., & Cavaco-Paulo, A. (2003). Laccases to improve the whiteness in a conventional: Bleaching of cotton. Macromolecular Materials and Engineering, 288, 807–810.
      Kodaka, M. (2004). Interpretation of concentration-dependence in aggregation kinetics. Biophysical Chemistry, 109, 325–332. (PMID: 15110949)
      Johannes, C., & Majcherczyk, A. (2000). Laccase activity tests and laccase inhibitors. Journal of Biotechnology, 78, 193–199. (PMID: 10725542)
      Abate, M. T. (2017). Combined pre-treatment and causticization of cotton fabric for improved dye uptake. Advance Research in Textile Engineering, 2, 1016.
      Mosjov, K. (2018). Enzymatic scouring and bleaching of cotton terry fabrics-opportunity of the improvement on some physicochemical and mechanical properties of the fabrics. Journal of Natural Fibers, 15, 740–751.
      Tzanov, T., Calafell, M., Guebitz, G. M., & Cavaco-Paulo, A. (2001). Bio-preparation of cotton fabrics. Enzyme and Microbial Technology, 29, 357–362.
      Jordanov, I., & Mangovska, B. (2011). Accessibility of mercerized, bioscoured and dried cotton yarns. Indian Journal of Fiber & Textile Research, 36, 259–265.
      Gonçalves, I., Herrero-Yniesta, V., Perales Arce, I., Escrigas Castañeda, M., Cavaco-Paulo, A., & Silva, C. (2014). Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics. Ultrasonics Sonochemistry, 21, 1535–1543. (PMID: 24618529)
      Basto, C., Tzanov, T., & Cavaco-Paulo, A. (2007). Combined ultrasound-laccase assisted bleaching of cotton. Ultrasonics Sonochemistry, 14, 350–354. (PMID: 16987689)
      Pereira, L., Bastos, C., Tzanov, T., Cavaco-Paulo, A., & Guebitz, G. M. (2005). Environmentally friendly bleaching of cotton using laccases. Environmental Chemistry Letters, 3, 66–69.
      Tavares, C., Silva, F. J. G., Correia, A. I., Pereira, T., Ferreira, L. P., & De Almeida, F. (2018). Study on the optimization of the textile coloristic performance of the bleaching process using pad-steam. Procedia Manufacturing, 17, 758–765.
      Bristi, U., Pias, A. K., & Lavlu, F. H. (2019). A Sustainable process by bio-scouring for cotton knitted fabric suitable for next generation. Journal of Textile Engineering & Fashion Technology, 5, 41–48.
      Martins, M., Azoia, N., Silva, C., & Cavaco-Paulo, A. (2015). Stabilization of enzymes in micro-emulsions for ultrasound processes. Biochemical Engineering Journal, 93, 115–118.
      Singh, G., & Arya, S. K. (2019). Utility of laccase in pulp and paper industry: A progressive step towards the green technology. International Journal of Biological Macromolecules, 134, 1070–1084. (PMID: 31129205)
    • Contributed Indexing:
      Keywords: Laccase; Madurella mycetomatis; Pichia pastoris; Stability; Structural modelling; Textile bleaching
    • الرقم المعرف:
      0 (Bleaching Agents)
      0 (Recombinant Proteins)
      EC 1.10.3.2 (Laccase)
    • الموضوع:
      Komagataella pastoris
    • الموضوع:
      Date Created: 20201015 Date Completed: 20210812 Latest Revision: 20220531
    • الموضوع:
      20221213
    • الرقم المعرف:
      10.1007/s12033-020-00281-9
    • الرقم المعرف:
      33058020