Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Numerical Multifield Coupling Model of Stress Evolution and Gas Migration: Application of Disaster Prediction and Mining Sustainability Development.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      At present, coal mining is gradually shifting towards deep areas, and coal mines under deep mining conditions are more prone to coal and gas outburst accidents. In this research, we aim to explain the causes and mechanisms of dynamic disasters, which are caused by the combined action of static load, gas, and dynamic load on tectonic regions in complex stress field environments. Through numerical simulation using COMSOL Multiphysics software, based on the geological conditions of a mine in Jilin Province, it was found that faults lead to abnormal stress in tectonic regions. The combined action of dynamic and static loads results in excessive stress, causing the fragmentation and displacement of the coal body, leading to coal mine disasters, thus disrupting sustainability. Additionally, the coal matrix gas entering fractures raises the gas pressure and leads to the accumulation of methane near earthquake sources. Dynamic loads accelerate gas desorption in coal and increase porosity and permeability, facilitating rapid gas migration. This influx of gas into the roadways exceeds safety limits. Then, based on these findings and on-site conditions, a set of sustainable measures for coal mines has been proposed. This research offers theoretical guidance for enhancing safety, stability, and sustainability in coal mining processes. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Sustainability (2071-1050) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)